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The nonlinear hydrodynamic responses of a novel spar-type soft-moored floating offshore
wind turbine are investigated via analysis of motion measurements from a wave-basin
campaign. A prototype of the TetraSpar floater, supporting a 1 : 60 scale model of
the DTU 10MW reference wind turbine, was subjected to irregular wave forcing
(with no wind) and shown to exhibit subharmonic resonant motions, which greatly
exceeded the wave-frequency motions. These slow-drift responses are excited nonlinearly,
since the rigid-body natural frequencies of the system lie below the incident-wave
frequency range. Pitch motion is examined in detail, allowing for identification of
different hydrodynamic forcing mechanisms. The resonant response is found to contain
odd-harmonic components, in addition to the even harmonics expected apriori and excited
by second-order difference-frequency hydrodynamic interactions. Data analysis utilising
harmonic separation and signal conditioning suggests that Morison drag excitation
or third-order subharmonic potential flow forcing could be at play. In the extreme
survival-conditions sea state, the odd resonant responses are identified to be drag-driven.
Their importance for the tested floater is appreciable, as their magnitude is comparable to
the second-order potential flow effects. Under such severe conditions, the turbine would
not be operating, and as such neglecting aerodynamic forcing and motion damping is likely
to be reasonable. Additionally, other possible drivers of the resonant pitch response are
explored. Both Mathieu-type parametric excitation and wavemaker-driven second-order
error waves are found to have negligible influence. However, we note slight contamination
of the measurements arising from wave-basin sloshing.
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1. Introduction

The expansion of offshore wind farms into deeper water requires floating concepts, as
bottom-fixed monopile turbines become prohibitively expensive beyond about 60 m water
depth (IRENA 2019). Such deep-water floating installations benefit from a more consistent
and abundant wind resource as well as greater availability of potential deployment sites.
In a floating concept, the tower, which supports the turbine, sits on a floater. The floater
can be fully or partially submerged and is moored to the seabed. In this work, a catenary
moored floater system is investigated. To avoid direct excitation by waves, such systems
are typically designed to have long natural periods, typically above 25–30s for pitch, roll,
heave and yaw. For surge and sway modes, the natural periods are usually even longer, due
to the absence of hydrostatic stiffness and low restoring force provided by the mooring.
Since the hydrodynamic damping is weak, the systems are highly resonant. It is well
known that low-frequency resonant motions of soft-moored structures can be excited by
second-order difference-frequency hydrodynamic loads.

Here, we show that, for the floater considered, Morison drag forcing can also give rise to
considerable resonant pitch motions. We focus on pitch motions because these are typically
the most critical for turbine performance due to their direct influence on the effective
inflow speed to the rotor. Surge motion is also relevant in this respect, though its effect is
generally weaker due to the motions being slower. Large floater pitch motion can couple
with the blade pitch control system of the turbine (Larsen & Hanson 2007). Furthermore,
extreme tower inclination angles induce strong overturning moments in the tower base (see
e.g. Madsen, Pegalajar-Jurado & Bredmose 2019). Understanding the amplified resonant
oscillations is of interest not only for the operational performance of the turbine, but
importantly also for design so as to avoid structural fatigue and to maintain mooring system
integrity.

A number of research studies on nonlinear hydrodynamic loads for offshore floating
wind turbines have been carried out in recent years. Goupee et al. (2014) performed
model-scale experiments in a combined wave and wind facility for three floater types
supporting a scaled 5 MW turbine. The spar and semi-submersible floaters exhibited
notable resonant subharmonic surge and pitch motions in the sea states and wind
conditions tested. For the semi-submersible floater, Coulling et al. (2013) successfully
replicated the experiments numerically, accounting for second-order wave loads (in
addition to wave-frequency and aerodynamic loading and the flexible behaviour of the
tower). When the turbine was not operating (parked rotor with feathered blades), the
difference-frequency wave forcing was shown to govern the global motion responses.
Comparison of the (parked) floater dynamics, in a severe sea state with and without winds,
revealed the nonlinear wave forcing to be dominant and the wind effects to be minimal
(even in strong winds).

In contrast, in tests when the turbine was operational, the measured and simulated
dynamics revealed dominance of the aerodynamic excitation of the slow-drift surge and
pitch motions. These low-frequency motions were found to be similar for wind-only
and wind-and-wave tests, though it should be noted that the tested sea state was fairly
mild (see Coulling et al. 2013). Similarly, Roald et al. (2013) proposed that inclusion of
second-order difference-frequency wave forcing is not essential for conditions when the
turbine is operating based on a numerical study with a spar floater. Simulations carried
out by Bayati et al. (2014) suggest that the subharmonic responses are dependent on both
wind and wave environmental conditions. Their study highlighted the importance of the
second-order difference-frequency hydrodynamics in severe wave conditions, while the
wind slow-drift loads were shown to be dominant in a milder sea state.
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Subharmonic responses of a floating wind turbine

As outlined above, investigating higher-order hydrodynamic effects is of interest, due to
their relevance for high-speed wind conditions (above cut-out speed, so turbine parked)
or when the turbine is not operating for other reasons such as faults, as well as for
severe wave conditions under which the nonlinear hydrodynamic forcing is expected to
dominate over aerodynamic effects. For accurate calculation of resonant motions in the
absence of wind, both the slow-drift hydrodynamic excitation and the hydrodynamic
damping levels are crucial (see Pegalajar-Jurado & Bredmose 2019). In laboratory tests,
however, both of these could be affected, for example due to difficulty of generating
and then absorbing low-frequency wave components in a wave basin/flume and due to
issues with scaling of viscous effects. A number of numerical modelling studies have
reported difficulties in accurately predicting subharmonic resonant load and/or motion
responses of floating wind turbines. The large code comparison initiatives OC5 and OC6
(see Robertson et al. 2017, 2020), as well as works by Azcona, Bouchotrouch & Vittori
(2019) and Li & Bachynski (2021) for example, reveal model underestimation of surge
and pitch resonant responses, when compared to wave-basin experiments. It is hoped
that the detailed examination of small-scale floater measurements presented in this paper,
which allow identification of different excitation mechanisms affecting the resonant floater
dynamics, could be useful in model validation.

The aim of this paper is to present a comprehensive analysis of the dynamic motion
of a model-scale floating wind turbine. We utilise harmonic separation, made possible
by phase-manipulated realisations in the tank. All the stochastic sea states were run with
phase inversion – a novelty for floating-structure response tests. The harmonic separation
reveals even-harmonic, as well as unexpected odd-harmonic, components of the resonant
responses. To identify the dominant hydrodynamic effects, we apply signal conditioning
techniques, where the bandpass-filtered even- and odd-harmonic response is correlated
with constructed proxy signals for the forcing. Second-order quadratic potential flow
effects and Morison drag loading are shown to be important. The paper is organised
as follows. First, in § 2, the floater characteristics and the experiments are outlined. In
§ 3, the signal processing techniques applied to the measured data are explained, and the
nonlinear responses identified. Furthermore, in § 4, we quantify other potential sources of
the resonant motion excitation.

2. Basin experiments

A comprehensive laboratory campaign investigating responses of a model-scale floating
wind turbine under wave and wind forcing was carried out in 2017 in the deep-water
basin at DHI, Hørsholm, Denmark. In this work, we focus on the hydrodynamics alone,
analysing tests in the absence of wind. The tested turbine was a 1 : 60 scale model of the
DTU 10 MW reference wind turbine. The TetraSpar floater (yellow structure in figure 1),
designed by Stiesdal Offshore Technologies, consists of a main column connected to three
sets of tanks, as well as a triangular counterweight suspended from these. Attached to
the tanks, three catenary mooring chains (in a symmetric arrangement, with one line
pointing down-wave, and two lines pointing obliquely up-wave) were used to soft-moor
the floater. Here, we analyse the spar configuration where the tanks were completely
submerged (leaving only the base of the tower column projecting through the free surface).
A prototype of the TetraSpar floater design aims to reduce production and installation costs
of floating offshore wind turbines by utilising simple tubular elements and by use of the
counterweight. This counterweight can be lowered once the turbine has been towed to
the deployment site, thus eliminating the need for deep-water harbours and/or the use of
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Figure 1. (a) Diagram of the wave basin, with wave gauges (blue) and the model (yellow). (b) Diagram of the
model and (c) photograph of the experimental set-up. Note that in the spar configuration tested the buoyancy
tanks are fully submerged. (d) Target (solid) and measured (dashed) free-surface variance density spectra S(η),
together with the floating-system rigid-body natural frequencies fni (details in tables 1 and 2). Note that the
measured spectra are from a wave gauge located at [x, y] = [5 m, 10 m].

expensive offshore operations vessels (see Borg et al. (2020) for details of the full-scale
deployment, with the floater installed in July 2021).

The wave basin is 30m wide and 20m long, with an absorbing beach and an articulated
flap wavemaker hinged 1.5 m above the basin floor (see figure 1). Linear wave generation
was used for calculation of the paddle signals, and active absorption by the wavemaker
was not utilised. The water depth was 3 m, and we note that most of the beach structure at
the far end of the basin was submerged. The model was positioned equidistantly from the
basin sidewalls and 5 m away from the wavemaker (at [x, y] = [5 m, 15 m], where x and y
denote the distance from and along the wavemaker). The relatively close placement of the
model to the wavemakers was necessary for tests with wind forcing (not reported here) to
ensure a consistent wind field over the swept rotor area produced by the wind generator.
The influence of linear evanescent waves at the model location was examined to ensure
that these local standing waves (originating from a velocity mismatch at the paddle face)
did not contaminate the experiments. For all components in the incident wave frequency
range, the summed evanescent wave amplitude at the model location was found to be
less than 0.5 % of the corresponding progressive component. Hence, these standing waves
almost completely decayed away, and their effect on the floater motions was negligible.

Free-surface elevations were measured with 10 wave gauges. Measurement from the
wave gauge at [x, y] = [5 m, 10 m], which is offset from the model laterally, is assumed
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Subharmonic responses of a floating wind turbine

Reference name EC5 EC6 EC11 EC64

Hs (m) 4.2 (0.069) 6.2 (0.103) 10.5 (0.175) 6.2 (0.103)
Tp (s) 7.3 (0.94) 8.9 (1.15) 14.2 (1.83) 18.0 (2.32)

Table 1. Environmental conditions used in the experimental campaign. Sea states are given in terms of
significant wave height Hs and peak period Tp, with Pierson–Moskowitz spectral shape. Model-scale values
are shown in parentheses.

to represent the undisturbed wave field (i.e. in the absence of the model) and is used in
the conditioned signal analysis. This is deemed appropriate due to the slender geometry
of the floater (with the diameter of the widest tubular element being 0.11 m in model
scale). The scattered and the radiated wave fields are therefore relatively small, and
their effect on gauge measurements at [x, y] = [5 m, 10 m] is further reduced due to
the geometric spreading associated with radially propagating waves. The wave gauges
placed along the basin centreline were utilised in the second-order error wave and basin
sloshing investigations; in particular, readings from the wave gauge closest the wavemaker
at [x, y] = [1 m, 15 m] are used in § 4.2. A Qualisys optical motion tracking system was
employed to measure the six-degree-of-freedom motions of the floater. An extensive range
of additional instrumentation was employed to measure tower and nacelle accelerations,
mooring line and counterweight line loads, as well as rotor behaviour. Further details of
the campaign are given in Borg et al. (2018). See also Bredmose et al. (2017) for details
on the model turbine.

In the experimental campaign, long-duration irregular wave tests were performed and
are examined here. We note that regular waves and focused wave group tests were also
carried out. All conditions were long-crested, and in this work only waves propagating in
the x-direction are presented (i.e. propagation direction normal to the wavemaker front).
The analysed sea states are listed in table 1; a Pierson–Moskowitz spectral shape was
used for all conditions. Sea states EC5, EC6 and EC64 can be considered operational,
whereas EC11 represents a survival extreme-conditions test. The long-duration runs were
3 h long (in full scale), roughly corresponding to between 600 and 1600 wave periods for
the longest and shortest waves tested. We note that, apart from the longest-period sea state
(with kpd = 2.3, where kp is the wavenumber corresponding to peak period Tp and d is
water depth), the conditions can be considered deep-water. In order to facilitate separation
of individual harmonics under the broad-banded wave conditions, phase-manipulated tests
were carried out. For each sea state, two realisations were performed: the first one with
randomly chosen phases, the second one with the phase of every component shifted by
180◦. We note that this is equivalent to inverting the linear paddle signal, which is very
convenient from a practical point of view. Such pairs of tests are used in § 3.1, where
harmonic separation is discussed.

The precise details of the model floater, tower and turbine will be omitted here for
brevity. The natural frequencies of rigid-body motions of the system are detailed in table 2.
The values were estimated from free-decay tests carried out as part of the campaign.
The mismatch of the surge and sway natural periods is thought to originate from a slight
deviation from symmetry in the experimental set-up. These experimentally derived natural
periods were closely matched by calculations using the system mass properties and the
linearised mooring and hydrostatic restoring forces.
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J. Orszaghova and others

Motion Surge Sway Heave Roll Pitch Yaw

Tni (s) 133 (17.2) 138 (17.7) 35 (4.5) 33 (4.3) 33 (4.3) 78 (10.1)
fni (Hz) 0.008 (0.06) 0.007 (0.06) 0.029 (0.22) 0.030 (0.23) 0.030 (0.23) 0.013 (0.10)

Table 2. Natural periods of the tested system Tni, where i = 1, . . . , 6 denotes the floater rigid-body motion
modes of surge, sway, heave, roll, pitch and yaw, respectively. Values of the natural frequencies fni = 1/Tni are
also given for convenience. Model-scale values are shown in parentheses.
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Figure 2. Measured free surface η and floater pitch motion θ time series. (a,b) Total undisturbed free surface.
(c,d) Total pitch. (e, f ) High-pass-filtered (HPF) odd-harmonics signal representing linear wave-frequency
pitch motion. (g,h) Even-harmonics signal (red) and low-pass-filtered (LPF) odd-harmonics signal (blue) both
representing subharmonic pitch motion.

3. Identifying nonlinear resonant responses

The measured floater surge, heave and pitch motions exhibit responses in the range of
the incident wave energy, as well as in the subharmonic range peaking at the respective
natural frequencies. Figure 2 shows short segments of the wave and pitch motion signals
from two sea states. The notable low-frequency motions are clearly seen. In addition, pitch
motion spectra for the four wave conditions investigated are displayed later in figure 4.
Since, for the floater considered, the natural frequencies of all six degrees of freedom lie
below the incident wave frequencies (see figure 1), the motion at the natural frequencies
must be driven nonlinearly. The analysis that follows identifies the source of these resonant
subharmonic motions.

3.1. Harmonic separation
Utilising the two phase-shifted realisations (the original and the inverted test), odd and
even harmonics can be separated via subtraction and addition of the two signals (e.g.
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Subharmonic responses of a floating wind turbine

Jonathan & Taylor 1997; Fitzgerald et al. 2014):

odd
1
2
(X0 − X180)

= Re
∑

n

AnQ(1)
n ei2πfnt + · · ·

+ Re
∑

n

∑
m

∑
p

AnA−:∗
m A−:∗

p Q(3±)
n,m,p ei2π( fn±fm±fp)t + O(A5),

even
1
2
(X0 + X180)

= Re
∑

n

∑
m

AnA−:∗
m Q(2±)

n,m ei2π( fn±fm)t + O(A4),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where X0 and X180 represent the two phase-shifted signals. In the above, An = |An|eiϕn and
Q(1)

n denote the complex wave amplitude and the complex linear transfer function of an fn
frequency component, with ϕn being the phase of the wave component. The superscript −:∗
denotes complex conjugation, which only applies to subharmonic components. The double
and triple summations each comprise both super- and subharmonics, with coefficients
Q(2±)

n,m and Q(3±)
n,m,p representing second- and third-order transfer functions/interaction

kernels, respectively. Further details on higher harmonic components are provided in
Appendix B. The reason the subtraction and addition time series contain the odd and
even harmonics, respectively, becomes clear when one considers the individual complex
amplitudes in the inverted signal, which are given by |An|ei(ϕn+π) = −An. With the
complex amplitudes pre-multiplied by a minus sign, all odd-harmonic terms become
inverted while the even-harmonic terms remain unaffected in the inverted signal.

This phase-based harmonic separation method relies on a Stokes-like structure of
the studied wave-driven response. It has been used to analyse various nonlinear wave
phenomena involving fixed (Fitzgerald et al. 2014; Zhao et al. 2017; Chen et al. 2018)
and floating (Roux de Reilhac et al. 2011; Chen et al. 2021) offshore structures, as well
as higher-order responses in coastal problems (Orszaghova et al. 2014; Whittaker et al.
2017; Judge et al. 2019). The above studies utilise short deterministic wave groups. More
recently, the method has been applied to random time series (Adcock et al. 2019; Zheng
et al. 2020; Kristoffersen et al. 2021), which we also pursue here.

To illustrate the frequency range of the various harmonics, figure 3 shows the
free-surface variance density spectra for the free linear components and the associated
second- and third-order bound waves. Details of the spectral calculations are included
in Appendix B. For clarity, a broad-banded top-hat spectral shape with clearly defined
cutoff frequencies fmin and fmax is shown, in addition to sea state EC5. As seen from the
spectral plots, the individual harmonics cannot be easily separated via frequency filtering
due to them overlapping, highlighting the usefulness of the harmonic separation using
phase-manipulated realisations. We note that straightforward frequency filtering is only
possible for very narrow-banded processes.

Within the even-harmonics signal, the second-order difference-frequency components
(terms with Q(2−)

n,m in (3.1) and denoted by S(2−) in figure 3) span frequencies
within (0, fmax − fmin), which includes the pitch natural frequency. The second-order
sum-frequency components (terms with Q(2+)

n,m in (3.1) and denoted by S(2+) in figure 3)
comprise frequencies (2fmin, 2fmax), so do not extend to the low-frequency subharmonic
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Figure 3. Theoretical free-surface variance density spectra S(η): (a) Pierson–Moskowitz input spectrum
EC5, with linear wavemaking up to 2.5 Hz; and (b) top-hat input spectrum with frequency range
( fmin, fmax) = (0.5, 2.5 Hz) and Hs = 0.069 m (same as EC5). Curves shown are: linear free wave spectrum
S(1) (black); second-order difference-frequency bound wave spectrum S(2−) (red); second-order sum-frequency
bound wave spectrum S(2+) (purple); third-order difference-frequency bound wave spectrum S(3−) (blue); and
third-order sum-frequency bound wave spectrum S(3+) (green). Note that only the low- and high-frequency
tails of the third-order difference-frequency spectrum S(3−) are shown. The solid green vertical line denotes
the pitch natural frequency fn5.

range where the natural frequencies lie. The second-order super- and subharmonics can be
suitably separated by frequency filtering.

Now inspecting the odd-harmonics signal, the third-order superharmonic (terms with
Q(3+)

n,m,p in (3.1) and denoted by S(3+) in figure 3) is typically centred around 3fp in frequency
and can be isolated by frequency filtering. However, the linear components (terms with
Q(1)

n in (3.1) and denoted by S(1) in figure 3) and the third-order subharmonic components
(terms with Q(3−)

n,m,p in (3.1) and denoted by S(3−) in figure 3) cannot be separated, as their
frequency ranges overlap. As detailed in Appendix B, the third-order subharmonic terms
arise from + + −, + − + and + − − combinations of linear frequencies. Their frequency
range is (max(0, 2fmin − fmax), 2fmax − fmin), and as such they extend below and above
the linear frequency range. Due to singularities in the third-order subharmonic transfer
function Q(3−)

n,m,p, only the low- and high-frequency tails of the spectrum S(3−) are shown in
figure 3. We note that the low-frequency range spans the pitch natural frequency.

The harmonic separation is applied to both the free surface η and the pitch motion θ

experimental signals. Careful alignment of the measured signals X0 and X180 is critical in
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Figure 4. Measured floater pitch motion variance density spectra S(θ): total, odd and even components,
respectively, are shown in dotted black, solid blue and solid red lines. The dash-dotted blue curve represents the
reconstructed linear pitch motion via application of the linear transfer function to the linearised free surface.
The solid green and the dashed black vertical lines denote the pitch natural frequency fn5 and the input peak
wave frequency fp, respectively.

ensuring correct cancellation of the relevant harmonics and in avoiding spectral leakage.
The linearised free surface ηL is obtained from the odd-harmonics free-surface signal,
which has been low-pass-filtered to remove third- and higher-order odd superharmonic
content. In the remaining signal, the third-order subharmonic bound wave content is
very small, due to the (mostly) deep-water conditions analysed here. For this reason, the
low-pass-filtered free-surface subtraction time series is taken to represent linear waves.

Figure 4 shows spectra of the total (dotted black), as well as the even (solid red) and the
odd (solid blue) pitch motion. We would expect the response at the low natural frequency
to appear in the even signal due to second-order subharmonic wave–floater interactions.
However, for the longer sea states EC11 and EC64, a comparably large response at the
pitch natural frequency also manifests in the odd signal. As mentioned above, there is
virtually no linear excitation at the natural frequency. The fact that this motion is not driven
linearly is confirmed by calculation of linear motion (dashed blue), which completely
fails to reproduce the response peak at the natural frequency. This calculation uses a
theoretical linear transfer function for pitch motion (based on the work of Pegalajar-Jurado,
Borg & Bredmose (2018)) applied to the linearised free surface ηL. Further details can
be found in Appendix A. The linearised hydrodynamic damping estimates are taken
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0 1 2 3 4 5 6 7 8

f (Hz)

S

S (1)

S+(ηL
3) scaled

S+(ηL
2) scaled

S –(ηL
2) scaled

S–(ηL
3) scaled

S(uL|uL|) scaled

fn5

Figure 5. Theoretical variance density spectra S. Linear free wave spectrum for sea state EC5 denoted by S(1)

(black). Difference- and sum-frequency spectral content of η2
L denoted by S−(η2

L) (red) and S+(η2
L) (purple),

respectively. Difference- and sum-frequency spectral content of η3
L denoted by S−(η3

L) (blue) and S+(η3
L)

(green), respectively. Spectrum of uL|uL| denoted by S(uL|uL|) (light blue). Note that the curves are scaled
and as such the vertical axis range is omitted. The solid green vertical line denotes the pitch natural frequency
fn5.

from Pegalajar-Jurado, Madsen & Bredmose (2019). Their analysis of this experimental
campaign reveals the pitch damping to be dependent on sea state severity, with the damping
values positively correlated with the significant wave heightHs.

For all conditions tested, the odd-harmonics pitch motion spectra exhibit a clear
frequency gap between the resonant and the wave-frequency responses (see figure 4).
Frequency filtering can thus be carried out with the cutoff frequency chosen to correspond
to the spectral minimum in the gap. The separated pitch motion time series are shown
in figure 2. The high-pass-filtered (HPF) odd-harmonics signal represents linearly excited
pitch motions. The resonant subharmonic pitch motions comprise contributions from the
even-harmonics signal and the low-pass-filtered (LPF) odd-harmonics signal.

3.2. Fluid forcing proxies
The nonlinear resonant pitch motions comprise both even and odd harmonics. The
odd response is somewhat unexpected, as one would typically assume the subharmonic
resonant motions to arise from second-order potential flow wave–structure interactions.
The spectral content of the second- and third-order bound waves is seen to encompass the
pitch natural frequency, suggesting quadratic and cubic interactions as plausible loading
mechanisms. Additionally, we also consider Morison drag loading, as its frequency content
is also relevant in the subharmonic range. In our data-driven analysis approach, we utilise
proxies for the three possible forcings at play.

The linearised free surface raised to the nth power, i.e. ηn
L, represents the nth-order bound

waves (and in fact other wave properties/contributions), assuming unit transfer function
values. It is thus a proxy for the nth-order potential flow forcing, which is generally due to
contributions from both the local nth-order processes and scattering of the nth harmonic of
the incident wave. Figure 5 shows spectra of the sum- and difference-frequency content of
the η2

L and η3
L signals, where here ηL denotes a linear synthetic, rather than the linearised

experimental, free-surface signal. The difference-frequency content of the squared and
cubed signals is given by (η2

L + [H(ηL)]2)/2 and 3ηL(η2
L + [H(ηL)]2)/4, respectively,
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where H denotes the Hilbert transform, which introduces a 90◦ phase shift into the
signal. The equivalent expressions for the sum frequencies are (η2

L − [H(ηL)]2)/2 and
ηL(η2

L − 3[H(ηL)]2)/4, and follow from Walker, Taylor & Eatock Taylor (2004). The
magnitudes of these proxy forcing signals are irrelevant and as such the spectra presented
in figure 5 have been scaled to aid comparison with figure 3. As expected, the proxy signals
have comparable spectral content to the bound wave components.

In addition to potential flow forcing, we consider viscous effects and approximate
these via the drag term of the Morison equation (see Morison, Johnson & Schaaf 1950).
Following the approach of Pegalajar-Jurado & Bredmose (2019), we can expand the
relative velocity formulation of the drag term (see e.g. Faltinsen 1993) into a pure forcing
term that is independent of the body velocity, as well as linear and quadratic damping
terms. We choose the drag forcing proxy to be uL|uL|, where uL represents the linearised
experimental horizontal fluid velocity at the mean free surface and | | represents the
modulus. Assuming deep water, we evaluate the velocity signal using the linearised
free-surface measurement ηL such that uL = H[η̇L], where the dot operator ˙ denotes time
differentiation. The frequency content of the drag forcing proxy is shown in figure 5. The
spectrum can be seen to have a peak around fp and (3–4)fp, similar to the third-order
potential flow terms. The low-frequency components extend below the linear range and
span the natural frequencies, thus possibly exciting the resonant motions.

To our knowledge, a closed-form expression for the uL|uL| signal using a broad-band
harmonic content of uL, similar to the summation expressions given in (3.1) for the second-
and third-order potential flow terms, is not possible. We can only write a regular wave
approximation, with simple sinusoidal velocity uL = a cos(ωt + p), which reads

a cos(ωt + p) |a cos(ωt + p)|

= 8
3π

a2 cos(ωt + p) + 8
15π

a2 cos(3ωt + 3p)

+
∞∑

n=2

(−1)(n+1)8a2

(2n − 1)(2n + 1)(2n + 3)π
cos((2n + 1)ωt + (2n + 1)p). (3.2)

The above is an infinite summation of progressively smaller odd-harmonic terms, with no
even harmonics. The drag forcing signal is thus dominated by the components close to the
linear spectral peak, as can be seen in figure 5. It is worth presenting here the third-order
potential flow forcing proxy for a sinusoidal linear signal, which is given by

(a cos(ωt + p))3 = 3
4 a3 cos(ωt + p) + 1

4 a3 cos(3ωt + 3p). (3.3)

The first term represents the subharmonics, the second term the superharmonics.
Comparing (3.2) and (3.3), we note a number of similarities and differences. In a

Stokes-like harmonic structure, an nth harmonic can be approximated to be proportional
to an cos(nωt + np), i.e. it scales as the nth power of the linear amplitude. We note
that the complete expression also contains higher-order subharmonic terms, which scale
as the (n + 2m)th power of the linear amplitude, and as such are much smaller. The
third-order effects investigated here are precisely such higher-order subharmonic terms
of the first harmonic (see the first term in (3.3), terms with Q(3−)

n,m,p in (3.1) and denoted by
S(3−) in figure 3). The key point is that Stokes odd harmonics only have odd amplitude
power scalings. On the other hand, in the drag forcing expression, all harmonics depend
quadratically on the linear amplitude, so the amplitude scaling is independent of the
harmonic number. The relationship between the harmonic number and the amplitude
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Figure 6. Third-order potential flow forcing η3
L and Morison drag forcing uL|uL| proxy signals for sea

state EC11 calculated using the experimental linearised free-surface signal ηL: (a) raw signals and
(b) bandpass-filtered (BPF) signals.

power is thus different. Focusing on the first harmonic ω components in the two
expressions, as these are most relevant for the analysis here, we note their phase alignment.
Extrapolating to a broad-banded situation, we anticipate the two forcing signals to be
strongly correlated, and to scale respectively as a square and a cube of the linear content
amplitude.

As we are interested in the resonant pitch motion, we bandpass filter (BPF) all the
response and the forcing proxy signals around the natural frequency (roughly between
0.75fn5 and 1.20fn5). We note that the strong similarity in shape between the BPF drag
and the BPF third-order loading signals remains. This is illustrated in figure 6 for sea state
EC11, where the experimental linearised free surface ηL was used. The assumed amplitude
scaling between the BPF uL|uL| and the BPF η3

L, i.e. power coefficient of 3/2, will be
utilised in analysis presented in§ 3.4.

3.3. Conditioned signal analysis
In order to identify the source of the pitch motion at the natural frequency, we use
signal conditioning (similar to Zhao et al. (2018)). The conditioning analysis involves
selecting a number (here 30) of the largest events in the conditioning signal, as well as
the corresponding sections of the conditioned signal. A portion of time series around
each identified peak is cut out, followed by shifting of each time axis such that the
maximum value occurs at zero relative time, and finally the 30 series are averaged. The
remaining structure in time of the averaged signals is indicative of the coupling between
the two processes. This is because the averaged conditioned signal would simply reduce to
zero-mean noise if there was no phase relationship to the conditioning process.

Figures 7 and 8 show the even and odd pitch motion conditioned on second and third
powers of ηL as well as on uL|uL|, with all signals having been suitably bandpass-filtered.
The conditioning signals are locally symmetric, as expected. For all sea states, the plots
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clearly show a coupling between η2
L and even-harmonic pitch (left-hand-side panel for

each sea state, i.e. panels (a) and (d) in Figures 7 and 8), confirming that these motions
are caused by quadratic interactions. For sea states EC6 and EC11, strong coupling is
also strikingly demonstrated between the odd-harmonic pitch signals and both the η3

L and
uL|uL| forcing proxies (middle and right-hand-side panels respectively, i.e. panels (e) and
(f ) respectively for sea state EC6 in Figure 7 and panels (b) and (c) respectively for sea
state EC11 in Figure 8). The fact that the pitch motions correlate with both conditioning
signals is consistent with figure 6, which shows their shape similarity. For the shortest and
longest sea states EC5 and EC64, however, these couplings appear less well defined, as the
expected response is mostly hidden within the noise band.

The conditioned signal analysis can also be performed in reverse, whereby we condition
on large even/odd pitch events. The equivalent plots to figures 7 and 8 are omitted for
brevity. However, we utilise the resulting conditioned signals to highlight reciprocity
between the two sets of coupled processes. For a linear system of two Gaussian
processes (with a linear relationship between input and output), the averaged output signal
conditioned on an extreme input event is identical to the scaled time-reversed/mirrored
averaged input signal conditioned on an extreme output event. The derivation of this
reciprocity relation is omitted here, but can be found in Zhao et al. (2018), for example.
The additional dash-dotted curves in figures 7 and 8 show the mean forcing time histories
that give the largest pitch response. Note that the time axis has been reversed for the ηn

L
and uL|uL| forcing time series and that the curves have been scaled.

For the even pitch and the assumed η2 loading, each pair of these reciprocity curves,
where above the noise levels, shows a distinct similarity. We note, of course, that the
second-order potential flow quadratic interactions are pairwise in frequency. However,
between a higher-order response and the corresponding higher-order forcing signal there
is a linear relationship. In other words, the nonlinear forcing operates on a linear
hydromechanical system through a linear transfer function, which we have confirmed with
this reciprocity analysis. It follows from Stokes theory that the second-order subharmonic
bound wave content in the undisturbed incident waves is very low for the (mostly)
deep-water conditions analysed in this work. Moreover, as the structure considered is
rather slender, the identified nonlinear responses are presumably excited by local quadratic
processes at the structure, as opposed to the incident or diffracted bound wave components.
This agrees with Simos et al. (2018), who carried out a comprehensive numerical
investigation of second-order difference-frequency wave forcing of a semi-submersible
floating turbine. Their study demonstrated that in deep water the second-order diffraction
contribution is negligible, and thus the second-order forcing follows primarily from the
quadratic/product terms of first-order wave and body variables.

The reciprocity analysis for the odd pitch motions appears to work equally well for
the third-order and the drag loading proxies. Clearly there cannot be a linear relationship
between the odd resonant motions and both the forcings. We postulate that, due to
averaging over only a limited number of events (spanning a range of amplitudes), we are
unable to determine which of the two processes is driving the odd pitch motions. We note
that, since the conditioned time histories are so similar (in magnitude and shape), it could
be that both effects are present and provide roughly equal excitation. Additional processing
of the data presented in the next section will reveal the dominant effect.

Lastly, we briefly comment on the surge and heave motions of the TetraSpar floater.
Analysis equivalent to that presented in figure 4 suggests that, in these modes, the
subharmonic odd responses are not as significant, and that the resonant motions are driven
by second-order interactions. We also note that bi-spectral (and tri-spectral) analysis (see
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Figure 7. Conditioned signal analysis for sea states EC5 (a–c) and EC6 (d–f ). Local average profiles of bandpass-filtered (BPF) even-harmonics and odd-harmonics pitch
motion (second and third rows, respectively, in each panel, for each sea state) conditioned on extrema in the BPF η2

L, η3
L and uL|uL| time series (first row in each panel,

for each sea state). The grey shading represents 95 % confidence intervals on the estimation of the mean signals. Reciprocity is shown by the dash-dotted curves, which
correspond to the scaled and time-reversed conditioned forcing signals. In the label, the symbol | represents ‘conditioned on’.
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Figure 8. As in figure 7, but for sea states EC11 (a–c) and EC64 (d–f ).
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e.g. Stansberg 1997) may also be used to identify nonlinear interactions and could have
been applied as a complementary approach to the signal conditioning pursued here.

3.4. Amplitude dependence analysis
In this section we attempt to establish whether the odd-harmonics resonant pitch motions
are due to third-order potential flow forcing or due to Morison drag loading, through an
amplitude scaling analysis. We focus on sea state EC11, which exhibits the largest odd
pitch motions, which we found to be strongly correlated with both the η3

L and uL|uL|
signals. We probe the linearity assumption of these correlations by examining the transfer
function at different response and forcing amplitudes. Rather than averaging across the top
30 events as above, we split the data into groups of 20, such that events 1–20 form the first
group, events 2–21 the second, etc. The averaged conditioning and conditioned signals of
each group are calculated. The conditioned profiles from different groups are found to be
similar, apart from scaling differences. This would be expected for a true linear correlation,
while profile changes would be expected to arise if the relationship was not linear. These
subtle changes in the mean profiles are not possible to detect due to the small number
of events available as well as due to the rather limited range of levels/amplitudes arising
from the different groups. We thus extract the maxima in these mean signals to establish a
representative amplitude/scale associated with each group of events. For the conditioning
signals, the maxima are at t = 0 s. For the conditioned signals, the maxima occur in very
close proximity to the extrema seen in figures 7 and 8.

We first illustrate the outcomes of this analysis on the even pitch motion and the
second-order forcing proxy in EC11 wave conditions. The extracted correlated amplitudes
are shown in figure 9(a,b). The linear relationship between the response and the assumed
forcing is confirmed, as the ratio between the representative conditioning and conditioned
amplitudes remains fairly constant. As such, the data from the 11 different subgroups
closely trace a best-fit straight line (forced to go through the origin), irrespective of
whether we condition on the forcing or the response. Figure 9(c) presents an ordered
peaks analysis, whereby the top 30 peaks in the forcing signal are plotted against the top
30 peaks in the even pitch signal. As such, there is no imposed time association between
the extrema extracted from the two signals. The fairly linear trend again confirms the
already established deduction that the even resonant pitch motion is driven by quadratic
interactions.

The same analysis performed on the odd pitch motion reveals differences in correlations
with the cubic potential flow and the Morison drag forcings. The relationship is found to be
more closely linear for the drag excitation, using both the time-correlated and the ordered
amplitudes. The amplitude scaling between η3

L and the odd pitch appears nonlinear. For
the relevant plots in figure 9, we have also displayed best-fit lines with a power coefficient
of 2/3 (and 3/2 as appropriate). The reasonable alignment of the data points with these
curves provides an additional consistency check. Our analysis suggests that, for this sea
state EC11, the odd resonant pitch motion is driven by a low-frequency contribution
from Morison drag. As such, it exhibits a quadratic dependence on the underlying wave
amplitudes and therefore also scales reasonably well with the cubic forcing term raised to
the power of 2/3.

We note that, for the other wave conditions tested, the equivalent analysis was not
successful in determining the source of the odd-harmonic pitch motions. The data
were either too clustered and/or too noisy to detect the subtle amplitude dependences.
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Figure 9. Amplitude dependence investigation for sea state EC11. (a,d,g) Representative response and forcing
amplitudes derived from multiple groups of events using conditioning on forcing. (b,e,h) Representative
response and forcing amplitudes derived from multiple groups of events using conditioning on response.
(c, f,i) Ordered forcing peaks versus ordered response peaks. The solid lines represent best-fit straight lines
through the origin. The dotted lines represent best-fit power curves through the origin, with the power
coefficient given in the legend.

Presumably the analysis is simply more distorted by noise, as the nonlinearity is weaker in
the less severe sea states (see also § 4.2 and figure 10).

In the procedure outlined above, there is a need to average over a large enough number
of events to derive reliable amplitude estimates, while also ensuring that all individual
events are large enough (ideally greater than twice the standard deviation of the record,
as per Taylor & Williams (2004)). Very long records are thus needed, which is difficult
experimentally as discussed in the next section. Alternatively, having multiple tests with
the same incident wave spectral content with different significant wave height would have
been useful. We will adopt this recommendation into the next round of experiments.
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4. Investigating other drivers of low-frequency oscillations

4.1. Parametric excitation
In this section we investigate whether the measured pitch floater motions could also be
driven through parametric resonance. Parametric resonance is a phenomenon that can
arise in mechanical systems, whereby a response in a particular mode is excited via a
time-varying parameter, as opposed to via direct forcing. A well-known example in ocean
engineering is the parametric roll of ships in head or following seas, where, in the absence
of direct forcing from waves (due to the port–starboard symmetry), large-amplitude roll
motions can occur. The roll motion is excited indirectly by time-varying roll stiffness
(see e.g. Oh, Nayfeh & Mook 2000; Shin et al. 2004). In moored structures, a similar
mechanism exists, whereby pitch/roll instability can arise due to the pitch/roll restoring
stiffness dependence on the instantaneous displaced volume and metacentric height, both
of which vary in time as the structure heaves and/or the free surface interacts with the hull.

According to Haslum & Faltinsen (1999) and Koo, Kim & Randall (2004), who
investigated roll/pitch motions in spar platforms in the framework of Mathieu instability,
the problematic conditions leading to indirectly excited resonant roll/pitch motions are
when there is substantial heave motion at twice the natural roll/pitch frequency (2fn5). This
could occur when the heave natural frequency fn3 is close to twice the roll/pitch natural
frequency, and/or when energetic wave components align with twice the natural roll/pitch
frequency. We note that for a structure with the symmetry properties of the TetraSpar, the
resultant parametrically excited motions would be a combination of roll and pitch (see
Orszaghova et al. (2019) for analysis of sway/surge instability in a moored axisymmetric
buoy). One can therefore gauge the presence of the instability by observing the roll spectra.
In all conditions tested, the measured roll spectra are found to be considerably smaller than
the corresponding pitch spectra. In the two potentially troublesome sea states, EC11 and
EC64, which span 2fn5 (see figure 4), the measured roll motions are in fact smaller than in
the other sea states. This suggests that the observed peaks at the natural pitch frequency
are not contaminated by motions arising from parametric resonance.

4.2. Second-order error waves and basin sloshing
It is well known that performing tests in a wave basin, compared to the open ocean,
introduces undesirable effects arising from the mechanical laboratory wave generation
and the finite basin domain coupled with imperfect absorption along basin walls. These
artefacts include higher-order spurious wave generation by nonlinear boundary condition
mismatch at the wavemaker, as well as linear and nonlinear excitation of resonant
basin modes (see e.g. § 10.2.2 in Dean & Dalrymple 2001; Bonnefoy, Le Touzé &
Ferrant 2006). In this section we investigate the potential impact of these effects on
the measured dynamics of the floater. We note that additional complications arise in
directional experiments due to finite-width wavemaker elements and reflections from
sidewalls. However, these are irrelevant here due to the unidirectional nature of the tests
analysed.

When linear wave generation theory is applied, spurious higher-order waves are
inadvertently generated (see Barthel et al. 1983; Hughes 1993; Schäffer 1996). Here we
are primarily concerned with the second-order subharmonic error waves due to their
frequency content spanning the floater natural frequencies. In shallow-water experiments,
these low-frequency free waves are known to contaminate floating body responses as well
as coastal responses (see e.g. Orszaghova et al. 2014; Whittaker et al. 2017). This is due
to the depth dependence of Stokes theory whereby second-order interactions increase
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Subharmonic responses of a floating wind turbine

with decreasing water depth. As such, the bound set-down, as well as the second-order
error waves, are non-negligible in shallow water. On the other hand, in deep water, the
low-frequency bound content is low, and typically so are the error waves arising from
application of linear wave generation. For reference, in EC11, which is the most nonlinear
sea state tested, the amplitude (in laboratory scale) of the bound set-down underneath
large wave groups is of the order of 5–10 mm and the amplitude of the long error
wave (a positive-elevation hump) is around 1 mm, for random waves with Hs = 175 mm.
Nevertheless, we evaluate the error waves to assess their potential effect on the measured
floater motions.

The second-order subharmonic spectra of the bound, error and total waves are calculated
via

S(2−)
bound( fn) = 2�f

N−n∑
m=1

S(1)( fm)S(1)( fm+n) |Q(2−)
bound( fm, fm+n)|2, (4.1)

S(2−)
error( fn) = 2�f

N−n∑
m=1

S(1)( fm)S(1)( fm+n) |Q(2−)
error( fm, fm+n)|2, (4.2)

S(2−)
total ( fn, x) = 2�f

N−n∑
m=1

S(1)( fm)S(1)( fm+n)

× |Q(2−)
bound( fm, fm+n)e−i(km+n−km)x + Q(2−)

error( fm, fm+n)e−iknx|2, (4.3)

where the discretised representation has been adopted. For a time series of duration
tmax with sampling interval �t, the corresponding resolution in the frequency domain
is �f = 1/tmax with fn = n�f and kn being the wave frequency and wavenumber linked
via the dispersion relation, and N = tmax/2�t being the number of Fourier components
(excluding the zero frequency mean component). In the above, S(1) and S(2−) denote
the linear and second-order difference-frequency free-surface variance density spectra,
respectively, and Q(2−) represents the second-order difference-frequency kernels/transfer
functions, which can be found in Schäffer (1996). We note that in the equations above a
factor of 2 is quoted, instead of the commonly used definition with a factor of 8 (see e.g.
Pinkster 1980; Kim & Yue 1990). This is due to different summation indices used (i.e.
summing up over an octant versus a quadrant), with more details provided in Appendix
B. We also remark that here it is sufficient to evaluate only the progressive error wave
components, as the evanescent non-propagating second-order terms are negligible already
at the first wave gauge, which is positioned 1 m from the wavemaker.

Owing to their different propagation speeds, the presence of free and bound waves can
give rise to an undesirable interference pattern in the basin (see (4.3)). This is particularly
noticeable for the superharmonics (not shown here), since the free and bound components
come in phase and out of phase repeatedly, resulting in the combined second-order
spectra exhibiting multiple peaks, which vary with distance from the wavemaker, as
also documented by Pierella, Bredmose & Dixen (2021). Figure 10(a,c,e,g) show the
calculated second-order subharmonic bound and error wave spectra (based on the input
Pierson–Moskowitz linear spectrum). In general, the bound waves are more prominent.
The error waves are particularly low around the floater pitch natural frequency. Applying
the theoretical pitch linear transfer function (LTF) to the calculated error waves gives
the predicted contaminating pitch motion. This is shown by the dash-dotted lines in the
response spectral plots in figure 10(b,d, f,h) (zoomed in on the low-frequency content).
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Figure 10. (a,c,e,g) Free-surface variance density spectra: total measured free surface from two wave gauges
shown by bold black solid and dotted lines, theoretical linear waves shown in blue, and theoretical second-order
subharmonic waves shown in red (solid, dashed and dash-dotted red lines denote the total, bound and error
components, respectively). The solid green and the grey vertical lines denote the pitch natural frequency
fn5 and the first three basin longitudinal sloshing frequencies fb1,...,3, respectively. (b,d, f,h) Pitch motion
variance density spectra: total, even and odd measured motions shown by solid black, red and blue lines,
respectively, calculated pitch via application of the LTF to the second-order subharmonic error waves shown
by the dash-dotted red line, and calculated pitch via application of the LTF to the measured free-surface
bandpass-filtered around the second basin sloshing frequency fb2 shown by the dashed black line.

It is clear that the influence of the subharmonic error waves is completely inconsequential
for the sea states tested. The use of linear wave generation theory is thus justified in these
deep-water tests. We note in passing that, contrary to intuition, the magnitudes of the
propagating bound and error waves do not need to be equivalent. Barthel et al. (1983)
shows them to be the same for long waves generated by a piston wavemaker, but, as
demonstrated here, in other scenarios this need not be the case.
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Subharmonic responses of a floating wind turbine

Basin mode 1 2 3 4 5

Wavelength (m) 40 20 13.3 10 8
Tbi (s) 7.6 4.2 3.1 2.6 2.3
fbi (Hz) 0.13 0.24 0.32 0.39 0.44

Table 3. Longitudinal basin sloshing modes: the first five sloshing modes, for basin length L, characterised by
wavelengths 2L/i and wave frequencies fbi for i = 1, . . . , 5 with the corresponding sloshing periods Tbi = 1/fbi.

We next analyse the extent of sloshing in the tank and the associated influence on the
low-frequency resonant pitch motion. Figure 10(a,c,e,g) show the measured free-surface
spectra from two wave gauges, one close to the wavemaker at [x, y] = [1 m, 15 m], and
the other at [x, y] = [5 m, 10 m], which is aligned with the floater location but offset
laterally. In the wave-frequency range, the measured spectra agree well with the theoretical
input spectrum. In the subharmonic range, however, there are clear differences between the
measured and the predicted total spectra. Note that, for each sea state, the total predicted
spectrum (as per (4.3)) shown is for location x = 1 m; the equivalent spectra at other wave
gauge locations are similar due to the bound waves dominance and the resulting weak
interference. In general, there appears to be more subharmonic wave energy present in the
basin compared to the theory. The measured spectra show distinct peaks, which align well
with the calculated longitudinal sloshing frequencies (see table 3), of which the first three
are highlighted with the vertical grey lines. We note that the location x = 5 m corresponds
to a free-surface node of the second mode standing wave pattern. Accordingly, the second
sloshing mode peak appears to be absent in the measurements from this wave gauge.

Sloshing (also referred to as seiching) is a common problem in wave basins and flumes,
and can arise through linear and/or nonlinear excitation of the basin eigenmodes. Molin
(2001) proposes a mechanism for basin mode excitation resulting from the wavemaker
transient as the generation starts and stops. In practice, the first few modes tend to be
dominant due to ineffective absorption of these very long waves (since the passive beach
would typically only be a fraction of their wavelengths). For this reason, the first few basin
frequencies can typically be fairly accurately estimated assuming a complete reflection
at the basin far end, which is what we have done here and summarised in table 3. The
shorter modes are more strongly dissipated, and in general do not become established as
easily. Basin sloshing is reported in the works of Essen, Pauw & van den Berg (2016)
and Shemer & Sergeeva (2009) for example. In our tests we note that the pitch natural
frequency fn5 is very close to the second basin mode frequency fb2. Even though there are
no free-surface oscillations associated with these standing waves at the floater location,
the wave kinematics stipulate horizontal fluid motions (in fact, this location is an antinode
for the fluid horizontal properties/variables; see e.g. § 4.4 in Dean & Dalrymple (2014)),
which can drive horizontal floater motions.

In order to assess the influence of the basin sloshing on the measured floater motions,
we apply the theoretical pitch linear transfer function to the BPF measured free-surface
spectra from the wave gauge at [x, y] = [1 m, 15 m]. This location exhibits close to the
full standing wave height. Since the absolute value of the pitch transfer function is very
similar for incident waves from 0◦ and 180◦, its application in this way is justified. In
doing so, we also presume the sloshing waves to satisfy the linear dispersion equation.
The minimum and maximum frequencies for the bandpass filter applied to the measured
free surface are 0.8fb2 and 1.2fb2, respectively. The resulting motion spectra are shown in
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dashed black lines in figure 10(b,d, f ,h). For the three shorter sea states, the sloshing-driven
pitch motions are relatively small, though noticeable. For the longest-period sea state
EC64, our estimates suggest that basin sloshing contaminates the measured responses
around the natural frequency to a considerable extent. This appears consistent with our
analysis above, where the conditioned odd pitch motion signal in sea state EC64 was found
to be rather small compared to the corresponding signal from EC6 (see figures 7(e,f ) and
8(e,f )) even though the odd motion content (around the natural frequency) was higher. We
also note that for sea state EC64, the effect of the third basin mode fb3 ≈ 0.32 Hz can be
seen within the linear frequency range in the measured wave spectra (see figure 10g). It is
also manifested in the calculated linear pitch motion spectrum in figure 4(d) in which the
linearised measured free surface ηL has been assumed to represent purely incident waves.

We conclude by remarking that standing waves are hard to eliminate in basin tests due
to their potential multiple generation sources, as well as the inherent space limitations for
their passive absorption and the wavemaker stroke limitations for their active absorption.
Since their frequency content can be similar to the natural frequencies of soft-moored
structures, their effect should be taken into account when comparing experimental and
numerical floating body responses.

5. Conclusions

A detailed analysis of the motion responses of a model-scale soft-moored floating wind
turbine in irregular waves revealed significant subharmonic excitation of the pitch mode.
The floater was subjected to long-duration waves only (zero wind speed) and resonant
motions were at the soft-moored rigid-body natural frequencies, which lie well below
the incident wave frequency range. Applying a harmonic separation technique to pairs
of phase-manipulated realisations revealed both even- and odd-harmonic content of
these slow-drift resonant responses. The even pitch motion was found to be excited by
second-order difference-frequency wave–structure interactions, as expected. In the milder
wave conditions, these second-order motions comprised the bulk of the resonant pitch
response. However, in the extreme sea state tested, the unexpected odd resonant pitch
motion was considerable, which prompted further investigation.

Using conditioned signal analysis, forcings arising from third-order potential flow, as
well as from Morison drag, were probed as possible drivers of the odd resonant motions.
The harmonic structure of u|u| drag loading, where u is the fluid velocity, differs from a
Stokes-like harmonic series. The third-order subharmonic potential flow forcing scales as
a cube of the linear amplitude, whereas drag is predominantly a quadratic effect. Thanks
to the observed amplitude dependence not following the usual Stokes structure, Morison
drag was found to dominate over the cubic low-frequency forcing under the severe wave
conditions and result in pitch motion of comparable magnitude to the second-order even
response.

Since in the studied experiments wind forcing was omitted, and as such the aerodynamic
effects of the turbine were excluded, the identified considerable drag-driven responses in
severe wave conditions may be applicable to other soft-moored spar platforms. Even in
weaker sea states, drag may presumably be the governing odd-harmonic effect due to its
square amplitude dependence, though this could not be unambiguously proven with the
available data. This analysis is a demonstration of harmonic decomposition treatment in
the presence of drag effects. As a recommendation for future wave–structure interaction
experimental campaigns, it is suggested to use two- or four-phase realisations carried
out at two or three different amplitudes. Such datasets will aid identification of the
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different excitation mechanisms influencing the floater dynamics, and can provide valuable
validation of different hydrodynamic components within numerical models.

This study highlights the importance of careful interrogation of free-surface and
response measurements collected in wave-basin experiments. In addition to the above
analysis, it was verified that second-order subharmonic error waves (present in the tests
due to the use of linear wave generation theory) had negligible effects, while some
contamination from basin sloshing was identified in the longest wave conditions tested.
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Appendix A

In this appendix we present the linear transfer function (LTF) extracted from the
measurements and compare it to the theoretical curves. Utilising the linearised free
surface ηL and the high-pass filtered (HPF) odd-harmonics pitch motion, the linear transfer
function can be derived from

LTF( f ) = FT of (HPF θ odd)

FT of ηL
, (A1)

where FT denotes the Fourier transform (i.e. the complex amplitudes of the individual
frequency components of the signal). In figure 11, the experimental linear transfer
functions are superimposed on the theoretical curves, which exhibit sharp resonant peaks.
Note that the lower peaks centred at fn1 = 0.06 Hz arise due to coupling between pitch
and surge. The resonant peaks attain different values according to the amount of linearised
damping estimated to be present in each test (according to Pegalajar-Jurado et al. 2019).
Away from resonance, the relevance of damping diminishes and the three theoretical
curves coalesce. The experimental LTFs are displayed for their relevant frequency ranges,
and can be seen to closely agree with the theoretical curves. The inset provides a
zoomed-in view with the same frequency scale.
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Figure 11. Experimental pitch motion linear transfer functions (LTFs) derived from the four different sea states
considered. Note that only the absolute value is shown. The theoretical LTF from Pegalajar-Jurado et al. (2018)
with linearised pitch damping estimates from Pegalajar-Jurado et al. (2019) is also shown.

Appendix B

In this appendix we derive the second-order spectrum formula (see (4.1)) and explain the
appearance of the factor 2, instead of the common definition, which utilises a factor of 8.
We illustrate this using second-order bound waves, but the same methodology applies to
other second-order wave and body hydrodynamic quantities. Additionally, the method is
extended to calculation of third-order bound wave spectra.

The second-order difference-frequency bound free surface, as per Schäffer (1996) or
Madsen & Fuhrman (2012) for example, is given as

η(2−)(t) = Re
N∑

n=1

N∑
m=n+1

AnA∗
mQ(2−)

n,m ei2π( fn−fm)t. (B1)

Here An denotes the complex amplitude (with An = |An|eiϕn , where ϕn is the phase) of
an fn frequency component (with fn = n�f , where �f is the frequency resolution). The
superscript ∗ denotes complex conjugation such that A∗

n = |An|e−iϕn . Finally, N represents
the number of discrete frequency components (excluding the zero frequency component)
and Q(2−)

n,m = Q(2−)( fn, fm) is the second-order subharmonic bound free-surface transfer
function.

In the above, the double summation is performed along row/columns in the
two-dimensional ( fn, fm) frequency space. However, it can be rewritten using diagonal
coordinates, where we note that the resultant second-order difference frequency fn − fm is
constant along the anti-diagonals (see e.g. Stansberg 1997):

η(2−)(t) = Re
N∑

d=1

ei2πfdt
N−d∑
i=1

AiA∗
i+dQ(2−)

i,i+d, (B2)

where fd = fn − fm. In the rearranged expression, the inner summation represents
the complex amplitude of the second-order fd component. The associated spectral
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representation thus follows from

S(2−)( fd) = 1
2�f

∣∣∣∣∣
N−d∑
i=1

AiA∗
i+dQ(2−)

i,i+d

∣∣∣∣∣
2

= 1
2�f

N−d∑
i=1

|AiA∗
i+dQ(2−)

i,i+d|2 + · · ·

+ 1
�f

N−d∑
i=1

N−d∑
j=i+1

|AiA∗
i+dQ(2−)

i,i+dAjA∗
j+dQ(2−)

j,j+d| cos(ϕi,i+d − ϕj,j+d), (B3)

where ϕi,i+d = ϕi − ϕi+d + ϕ
Q
i,i+d represents the phase difference between the two

interacting components as well as any phase shift arising from the transfer function. We
note in passing that for bound waves this phase shift is zero, as the transfer function Q(2−)

i,i+d
is real (though the value is negative for subharmonics).

The double summation consists of terms of the form X = α cos ϕ, where α is a
positive real number and ϕ is a random variable uniformly distributed between (−π, π).
Here, it is sufficient to consider ϕ between (0, π), since cos ϕ is an even function. The
expected value of each term in the double summation is 0, i.e. E(X) = 0. This follows
from the probability density function p.d.f.X(x) = (π2(A2 − x2))−1/2. Consequently, the
entire double summation in (B3) reduces to 0. Finally, using |Ai|2 = 2�f S(1)

i , where
S(1)

i = S(1)( fi) denotes the linear variance density spectrum, the second-order spectrum
becomes

S(2−)( fd) = 2�f
N−d∑
i=1

S(1)
i S(1)

i+d|Q(2−)
i,i+d|2, (B4)

which is independent of the phase information of the interacting linear components and the
phase of the transfer function. The commonly quoted expression for second-order spectra,
which uses a factor of 8, rather than 2 (see e.g. Pinkster 1980; Kim & Yue 1990), can
be derived following the procedure outlined above. The difference originates from the
second-order time series definition (see (B1)), where the inner summation indices would
be m = 1, . . . , N, and the transfer function would be appropriately defined over the whole
quadrant.

The use of diagonal coordinates is helpful in the derivation and the physical
interpretation. However, for practical computation, the second-order free-surface spectra
can simply be evaluated via

S(2−)
n−m = S(2−)( fn − fm) = 2�f

N∑
n=1

N∑
m=n+1

S(1)
n S(1)

m |Q(2−)
n,m |2, (B5)

S(2+)
n+m = S(2+)( fn + fm) = 2�f

N∑
n=1

N∑
m=n

S(1)
n S(1)

m |Q(2+)
n,m |2, (B6)

where the definition of the transfer function for the self–self interactions Q(2+)
n,m contains a

factor of 1/2 (see (25b) in Schäffer (1996) or (3.11) in Madsen & Fuhrman (2012)).
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Extending the above, one can derive expressions for third-order spectra. Following
Madsen & Fuhrman (2012), the third-order bound wave components are given as

η(3+)(t) = Re
N∑

n=1

N∑
m=n

N∑
p=m

AnAmApQ(3+)
n,m,p ei2π( fn+fm+fp)t, (B7)

η(3−)(t) = Re
N∑

n=1

N∑
m=n

N∑
p=m+1

AnAmA∗
pQ(3−)

n,m,p ei2π( fn+fm−fp)t + · · ·

+
N∑

n=1

N∑
m=n+1

N∑
p=m+1

AnA∗
mApQ(3−)

n,m,p ei2π( fn−fm+fp)t + · · ·

+
N∑

n=1

N∑
m=n+1

N∑
p=m

AnA∗
mA∗

pQ(3−)
n,m,p ei2π( fn−fm−fp)t, (B8)

where the definition of the transfer function for the self–self–self interactions Q(3+)
n,n,n

contains a factor of 1/6 (see (3.38), (3.39) and (3.63) in Madsen & Fuhrman (2012))
and the transfer functions for the self–self–other interactions Q(3+)

n,n,m, Q(3+)
n,m,m, Q(3−)

n,n,−m and
Q(3−)

n,−m,−m contain a factor of 1/2 (see (3.36) and (3.37) in Madsen & Fuhrman (2012)).
The third-order sum-frequency spectrum is defined as

S(3+)
n+m+p = S(3+)( fn + fm + fp) = (2�f )2

N∑
n=1

N∑
m=n

N∑
p=m

S(1)
n S(1)

m S(1)
p |Q(3+)

n,m,p|2. (B9)

However, the existence of harmonic resonance poses difficulty in evaluation of the
third-order difference-frequency free-surface time series (B8) and the associated spectra.
Resonant interactions arise when the resulting third-order bound frequency is equal to the
frequency of a free component of the same wavenumber (see Phillips 1960). Physically
this represents a continuing transfer of energy, resulting in a substantial growth of the
amplitude of the third-order component. At resonance, the third-order theory of Madsen
& Fuhrman (2012) breaks down due to inherent singularities in the difference-frequency
transfer function Q(3−)

n,m,p. Moreover, even in near-resonant conditions, the perturbation
expansion can be violated when the third-order components become larger than the
corresponding lower-order terms.

For this reason, we can only use the third-order theory of Madsen & Fuhrman
(2012) (or the deep-water unidirectional theory of Zhang & Chen 1999) when far away
from resonance. The frequency range of difference-frequency third-order components is
(max(0, 2fmin − fmax), 2fmax − fmin), where fmin and fmax denote the lowest and highest
linear frequency components. We note that this is broader than the linear frequency
range, and that the low-frequency third-order terms (below fmin) arise from the + + −
interactions, whereas the high-frequency third-order terms (above fmax) arise from the
+ − − interactions. In the unidirectional seas investigated herein, the harmonic resonance
condition can be satisfied everywhere within the linear range, and as such only when |fn +
fm − fp| � fmin and when |fn − fm − fp| � fmax can the third-order solution be practically
evaluated. Bearing this in mind, the low- and high-frequency tails of the third-order
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Figure 12. Free-surface variance density spectra for linear (black), second-order difference-frequency (red),
second-order sum-frequency (purple), third-order difference-frequency (blue) and third-order sum-frequency
(green) interactions. Note that only the low- and high-frequency tails of the third-order spectrum S(3−) are
shown. The solid lines show the calculated spectra using linear spectral components S(1) and the absolute
values of the transfer functions from (B5), (B6), (B9), (B10) and (B11). The dashed lines and the faint lines
show the corresponding smoothed and raw spectra calculated from a random-phase realisation.

difference-frequency spectrum are given by

S(3−)( fn + fm − fp � fmin) = (2�f )2
N∑

n=1

N∑
m=n

N∑
p=m+1

S(1)
n S(1)

m S(1)
p |Q(3−)

n,m,−p|2, (B10)

S(3−)( fn − fm − fp � fmax) = (2�f )2
N∑

n=1

N∑
m=n+1

N∑
p=m

S(1)
n S(1)

m S(1)
p |Q(3−)

n,−m,−p|2. (B11)

Figure 12 shows the free-surface linear spectrum and the higher-order bound spectra for
sea state EC5, using N = 500 components with the frequency range up to fmax = 2.5 Hz,
which was the high-frequency cutoff in the laboratory experiments. The second- and
third-order spectra calculated from the linear spectral components S(1) and the absolute
values of the transfer functions (via (B5), (B6), (B9), (B10) and (B11)) are shown with
solid lines. The raw and smoothed spectra from a single realisation with random phases
are shown in faint solid and dashed lines, respectively. The smoothed spectral curves are
seen to agree with the calculated spectra closely, confirming the validity of the derived
equations.
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